

GRADE: XII Date:

SAMPLE QUESTION PAPER FIRST TERM EXAMINATION (2023-24) APPLIED MATHEMATICS (241)

Marks: 80 Time: 3 HOURS

General Instructions :

- 1. This Question paper contains **five sections** A,B,C,D and E. Each section is compulsory. However, there is some internal choice in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer(VSA) questions of 2 marks each.
- 4. Section C has 6 Short Answer(SA) questions of 3 marks each.
- 5. Section D has 4 Long Answer(LA) questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (04 marks each) with sub parts.
- Internal Choice is provided in 2 questions in Section-B, 2 questions in Section-C, 2 Questions in Section-D. You have to attempt only one alternatives in all such questions.

SECTION A

(All Questions are compulsory. No internal choice is provided in this section)

- Q -1 The value of -70 mod 13 is (a) 5 (b) -5 (c) 8 (d)-8
- Q -2 If $\frac{x+1}{x+2} \ge 1$, then (a) $x \in [-\infty, 2]$ (b) $x \in (-\infty, -2)$ (c) $x \in (-\infty, 2]$ (d) $x \in (-\infty, 2)$

Q-3 If $x \le 8$ then,

(a)
$$-x \le -8$$
 (b) $-x \ge -8$ (c) $-x < -8$ (d) $-x > -8$

Q-4 If $|x - 2| \ge 7, x \in R$, then

(a) (-5, 9] (b)[-5, 9] (c) $(-\infty, -5] \cup [9, \infty)$ (d) $(-\infty, -5) \cup (9, \infty)$

Q-5 A man can row 6 km/h in still water. It takes him twice as long to row up as to row down the river. Then the rate of the stream is

(a) 2 km/h (b) 4 km/h (c) 6 km/h (d) 8 km/h

Q-6 If
$$x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$
, then the value of x and y are :
(a) -4, 3 (b) 3, -4 (c) 3, -3 (d) 4, -4

- Q-7 The least non-negative remainder when 3⁵⁰ is divided by 7 is (a) 4 (b) 3 c) 2 d) 1
- **Q-8**. If $A = \begin{bmatrix} 2 & x+7 \\ 2x-3 & x+8 \end{bmatrix}$ is symmetric, then x is equal to (a) 9 (b) 10 (c) 5 (d) 4

Q-9
$$\int \frac{\log x}{x} dx$$
 equals
(a) $\frac{\log x}{2} + C$ (b) $\frac{(\log x)^2}{2} + C$ (c) $\log x + C$ (d)) $\log (\log x) + C$

Q-10 If
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 6 & -6 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & -6 \end{bmatrix}$, then

(a) Only AB is defined (b) only BA is defined

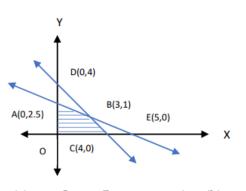
(c)AB and BA are both defined

Q-11 The function $f(x) = x^3$

(a)decreasing on R

(c) Both (a) and (b)

(d) neither increasing nor decreasing


(b) increasing on R

(d) AB and BA both are not defined

Q-12 If Let A be a square matrix of order 2×2 , then |KA| is equal to

(a) K|A| (b) K²|A| (c) K3|A| (d) 2K|A|
Q-13 If
$$\begin{bmatrix} 1 & 3 & 9 \\ 1 & x & x^2 \\ 4 & 6 & 9 \end{bmatrix}$$
 is singular matrix, then x =
(a) 3 (b) 3 0r 6 (c) 3 or $\frac{3}{2}$ (d)-3 or $-\frac{3}{2}$
Q-14 If A = $\begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, then the value of x is:
(a) 2 (b) $-\frac{1}{2}$ (c) 1 (d) $\frac{1}{2}$

Q-15 Besides non negativity constraint the figure given below is subject to which of the following constraints

 $\begin{array}{ll} \text{(a)} \ x+2y \ \leq \ 5 \ ; x+y \ \leq \ 4 \\ \text{(c)} \ x+2y \ \geq \ 5 \ ; x+y \ \geq \ 4 \\ \text{(d)} \ x+2y \ \leq \ 5 \ ; x+y \ \geq \ 4 \end{array}$

Q-16 If $x = at^2$, y = 2at, then $\frac{d^2y}{dx^2} =$

(a)
$$-\frac{1}{2at^3}$$
 (b) $-\frac{1}{2at^2}$ (c) $\frac{1}{t^2}$ (d) $-\frac{2a}{t}$

Q-17 The equation of the normal to the curve $y = x^2 - x$ at (1,0) is :

(a)
$$x + y = 0$$
 (b) $x - y = 0$ (c) $x + y = 1$ (d) $x - y = 1$

Q-18 If the marginal revenue function of a commodity is MR = $2x - 9x^2$, then the revenue function is

(a) $2x^2 - 9x^3$ (b) 2 - 18x (c) $x^2 - 3x^3$ (d) $18 + x^2 - 3x^3$

ASSERTION REASON BASED QUESTIONS

In the following questions, a statement of Assertion(A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices

- a. Both A and R are true and R is the correct explanation of A.
- b. Both A and R are true and R is not the correct explanation of A.
- c. A is true but R is false.
- d. A is false but R is true.
- **Q-19 Assertion (A)**: The maximum profit that a company makes if profit function is given by $P(x) = 41 + 24x \cdot 8x^2$; where 'x' is the number of units and P is the profit is ₹59

Reason (R): The profit is maximum at x = a if P'(a) = 0 and P''(a) > 0

20. <u>Assertion(A)</u>: If an LPP attains its maximum value at two corner points of the feasible region then it attains maximum value at infinitely many points <u>Reasoning (R)</u>: If the value of the objective function of a LPP is same at two corners then it is same at every point on the line joining two corner points.

SECTION B

(All Questions are compulsory. In case of internal Choice, attempt any one question only)

Q-21 Solve : $5x - 7 < 3(x + 3), 1 - \frac{3x}{2} \ge x - 4$

Q-22 If A is a square matrix $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ such that $A^2 = pA$, then find the value of p.

OR

- If $\begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix}$ is skew -symmetric matrix, then find value of a+b+c
- Q-23 A Cooperative Society of farmers has 10 hectares of land to grow two crops A and B. To control weeds, pesticide has to be used for crops A and B at the rate of 30 grams per hectare and 15 grams per hectare respectively. Further, not more than 750 grams of pesticide should be used. The profit from crops A and B per hectare are estimated as ₹8000 and ₹9500. Formulate the above problem as LPP, in order to allocate land to each crop for maximum total profit.
- Q-24 A man rows 15km upstream and 25km downstream each in 5 hours. Find he speed of the stream.

OR

- 'A' can run 40 meters while 'B' runs 50 meters in the same time. In a 1000 m race, find by how much distance 'B' beats 'A'.
- Q-25 Find the rate of change of volume of a sphere with respect to its surface area when

radius is 5m.

SECTION C

All Questions are compulsory. In case of internal Choice, attempt any one question only

Q-26 Find: $\int \frac{x^3}{(x+2)} dx$

Find: $\int (x^2 + 1) \log x \, dx$

- Q-27 Cost of two toys A and B are ₹50 and ₹75. On a particular Sunday shopkeeper P sells 7 toys of type A and 10 toys of type B whereas shopkeeper Q sells 8 toys of type A and 6 toys of type B. Find income of both shopkeepers using matrix Algebra.
- **Q-28** Find the intervals in which the function $f(x) = 2x^3 9x^2 + 12x 5$ is increasing or decreasing.
- **Q-29** The demand and supply functions under the pure market competition are $p_d = 16 x^2$ and $p_s = 2x^2 + 4$ respectively, where p is the price and x is the quantity of the commodity. Using integrals find **Consumer's surplus**.

OR

The demand and supply functions under the pure market competition are $p_d = 56 - x^2$ and $p_s = 8 + \frac{x^2}{3}$ respectively, where p is the price and x is the quantity of the commodity. Using integrals find **Producer's surplus.**

A runs 3 times as fast as B.If A gives B a start of 50m, then find the distance

of the finish point on the race course so that A and B reach the goal at the same time.

Q-31 Find the number of pairs of consecutive even positive integers, both of which are larger than 8 and their sum is less than 25.

SECTION D

(This section comprises of long answer type questions (LA) of 5 mark each)

Find the adjoint of the matrix

[-1	-2	-21
2	1	$\begin{bmatrix} -2 \\ -2 \end{bmatrix}$
2	-2	1

and hence show that $A(adjA) = |A|I_3$

Q-33 A manufacturer has three machines I,II and III installed in his factory. Machines I and II are capable of being operated for at most 12 hours whereas machine III must be operated for at least 5 hours a day. He produces only two items M and N, each requiring the use of all the three machines. The number of hours required for producing 1 unit of M and N on three machines are given in the following table:

Items	Number of hours required on machines		
	Ι	II	III
М	1	2	1
N	2	1	1.25

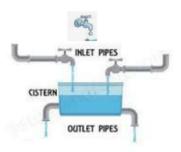
He makes a profit of ₹600 and ₹400 on one unit of items M and N respectively. Formulate the above problem as LPP and solve it graphically to find how many units of each item be produced to maximize profit. Also find the maximum profit.

Q-34 A company produces a certain commodity with ₹2400 fixed cost. The variable cost is estimated to be 25% of the total revenue received on selling the product at a rate of ₹8 per unit. Find the following

(i)	Cost Function.	(ii) Revenue Function
(iii)	Breakeven Point	(iv) Profit Function
		OR

The production manager of a company plans to include 180 sq cm of actual printed matter in each page of a book under production. Each page should have a 2.5 cm wide margin along the top and bottom and 2 cm wide margin along the sides. What are the most economical dimensions of each printed page?

35.Solve the following system of equation using matrix method


3x+y+z=10, 2x-y-z=0, x-y+2z=1

OR Find the value of k if M = $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $M^2 - kM - I_2 = 0$

SECTION E (This section comprises of 3 source based questions (Case Studies) of 4 mark each)

Q-36 Case Study 1 : Pipes and Cisterns (Mark 2+1+1) (Internal choice is in the iii part)

A, B and C are three pipes connected to a tank. A and B together fill the tank in 6 hours. B and C together fill the tank in 10 hours. A and C together fill the tank in $7\frac{1}{2}$ hours. Based on above information answer the following questions.

(i) In how much time will A, B and C fill the tank?

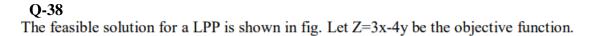
(ii) In how much time will A separately fill the tank?

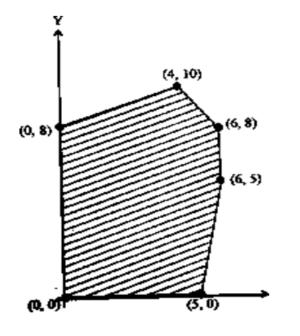
(iii) In how much time will B separately fill the tank?

OR

In how much time will C separately fill the tank?

Q-37 The marginal revenue of a product is given by $M = 7 - 4X + 3x^2$, where x is the number


Of units produced and sold.Based on the above information answer the following:


(a) Find the revenue function

OR

If at x=4 revenue generated id Rs 20, then ffind the revenue function.

- (b) Find the demand function
- (c) Find the average revenue

- (i) At what point, Z attains min value.
- (ii) Find the minimum value of Z.
- (iii) At what point, Z attains max. value.
- (iii) Find the maximum value of Z.

OR